SEMI OpenIR  > 光电子研究发展中心
A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs
Qingguo Wei;   Shan Zhu;   Yijun Wang;   Xiaorong Gao;   Hai Guo ;   Xuan Wu
2020
Source PublicationINTERNATIONAL JOURNAL OF NEURAL SYSTEMS
Volume30Issue:5Pages:2050020
Indexed BySCI
Document Type期刊论文
Identifierhttp://ir.semi.ac.cn/handle/172111/30306
Collection光电子研究发展中心
Recommended Citation
GB/T 7714
Qingguo Wei; Shan Zhu; Yijun Wang; Xiaorong Gao; Hai Guo ; Xuan Wu. A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs[J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS,2020,30(5):2050020.
APA Qingguo Wei; Shan Zhu; Yijun Wang; Xiaorong Gao; Hai Guo ; Xuan Wu.(2020).A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs.INTERNATIONAL JOURNAL OF NEURAL SYSTEMS,30(5),2050020.
MLA Qingguo Wei; Shan Zhu; Yijun Wang; Xiaorong Gao; Hai Guo ; Xuan Wu."A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs".INTERNATIONAL JOURNAL OF NEURAL SYSTEMS 30.5(2020):2050020.
Files in This Item:
File Name/Size DocType Version Access License
341-A Training Data-(168KB)期刊论文作者接受稿限制开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Qingguo Wei; Shan Zhu; Yijun Wang; Xiaorong Gao; Hai Guo ; Xuan Wu]'s Articles
Baidu academic
Similar articles in Baidu academic
[Qingguo Wei; Shan Zhu; Yijun Wang; Xiaorong Gao; Hai Guo ; Xuan Wu]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Qingguo Wei; Shan Zhu; Yijun Wang; Xiaorong Gao; Hai Guo ; Xuan Wu]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.