高级检索   注册
SEMI OpenIR  > 中国科学院半导体研究所(2009年前)  > 期刊论文

题名: Continuous speech recognition based on ICA and geometrical learning
作者: Feng H (Feng Hao);  Cao WM (Cao Wenming);  Wang SJ (Wang Shoujue)
发表日期: 2006
摘要: We investigate the use of independent component analysis (ICA) for speech feature extraction in digits speech recognition systems. We observe that this may be true for recognition tasks based on Geometrical Learning with little training data. In contrast to image processing, phase information is not essential for digits speech recognition. We therefore propose a new scheme that shows how the phase sensitivity can be removed by using an analytical description of the ICA-adapted basis functions. Furthermore, since the basis functions are not shift invariant, we extend the method to include a frequency-based ICA stage that removes redundant time shift information. The digits speech recognition results show promising accuracy. Experiments show that the method based on ICA and Geometrical Learning outperforms HMM in a different number of training samples.
KOS主题词: networks
刊名: ADVANCES IN MACHINE LEARNING AND CYBERNETICS
专题: 中国科学院半导体研究所(2009年前)_期刊论文

条目包含的文件

文件 大小格式
3216.pdf248KbAdobe PDF 联系获取全文


许可声明:条目相关作品遵循知识共享协议(Creative Commons)。


推荐引用方式:
Feng H (Feng Hao); Cao WM (Cao Wenming); Wang SJ (Wang Shoujue) .Continuous speech recognition based on ICA and geometrical learning ,ADVANCES IN MACHINE LEARNING AND CYBERNETICS,2006 ,3930(0):974-983
个性服务
 推荐该条目
 保存到收藏夹
 查看访问统计
 Endnote导出
Google Scholar
 Google Scholar中相似的文章
 [Feng H (Feng Hao)]的文章
 [Cao WM (Cao Wenming)]的文章
 [Wang SJ (Wang Shoujue)]的文章
CSDL跨库检索
 CSDL跨库检索中相似的文章
 [Feng H (Feng Hao)]的文章
 [Cao WM (Cao Wenming)]的文章
 [Wang SJ (Wang Shoujue)]的文章
Scirus search
 Scirus中相似的文章
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
所有评论 (0)
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

 

 

Valid XHTML 1.0! 版权所有 © 2007-2012  中国科学院半导体研究所  -反馈
系统开发与技术支持:中国科学院国家科学图书馆兰州分馆(信息系统部)
本系统基于 MIT 和 Hewlett-Packard 的 DSpace 软件开发